首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization and analysis of thermal denaturation of antibodies by size exclusion high-performance liquid chromatography with quadruple detection
Authors:Hartmann Wanda K  Saptharishi Nirmala  Yang Xiao Yi  Mitra Gautam  Soman Gopalan
Institution:Bioanalytical Development Laboratory, Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick, MD 21702, USA.
Abstract:Size exclusion chromatography (SEC) coupled with online light scattering, viscometry, refractometry, and UV-visible spectroscopy provides a very powerful tool for studying protein size, shape, and aggregation. This technique can be used to determine the molecular weight of the component peaks independent of the retention times in the SEC column and simultaneously measure the hydrodynamic radius and polydispersity of the protein. We applied this technology by coupling an Agilent Chemstation high-performance liquid chromatography system with a diode array UV-visible detector and a Viscotek 300 EZ Pro triple detector (combination of a light scattering detector, refractometer, and differential pressure viscometer) to characterize and compare the molecular properties of a number of monoclonal antibodies. Our studies reveal that different monoclonal immunoglobulin Gs (IgGs) and chimeric IgGs show slightly different retention times and therefore different molecular weights in gel filtration analysis. However, when they are analyzed by light scattering, refractometry, and viscometry, different IgGs have comparable molecular weight, molecular homogeneity (polydispersity), and size. Gel filtration coupled with UV or refractive index detection suggests that antibodies purified and formulated for preclinical and clinical development are more than 95% monomer with little or no detectable soluble aggregates. Light scattering measurements showed the presence of trace amounts of soluble aggregate in all the IgG preparations. The different IgG molecules showed different susceptibility to heat and pH. One of the murine antibodies was considerably less stable than the others at 55 degrees C. The application of this powerful technology for the characterization of monoclonal antibodies of therapeutic potential is discussed.
Keywords:Online SE-HPLC  Light scattering  Refractometry  Intrinsic viscosity  Protein aggregation kinetics  Stability  Thermal denaturation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号