首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The "dashpot" mechanism of stretch-dependent gating in MscS
Authors:Akitake Bradley  Anishkin Andriy  Sukharev Sergei
Institution:Department of Biology, University of Maryland, College Park, MD 20742, USA.
Abstract:The crystal structure of the small conductance mechanosensitive channel (MscS) has been an invaluable tool in the search for the gating mechanism, however many functional aspects of the channel remain unsettled. Here we characterized the gating of MscS in Escherichia coli spheroplasts in a triple mutant (mscL-, mscS-, mscK-) background. We used a pressure clamp apparatus along with software developed in-lab to generate dose-response curves directly from two-channel recordings of current and pressure. In contrast to previous publications, we found that MscS exhibits essentially voltage-independent activation by tension, but at the same time strong voltage-dependent inactivation under depolarizing conditions. The MscS activation curves obtained under saturating ramps of pressure, at different voltages, gave estimates for the energy, area, and gating charge for the closed-to-open transition as 24 kT, 18 nm2, and +0.8, respectively. The character of activation and inactivation was similar in both K+ and Na+ buffers. Perhaps the most salient and intriguing property of MscS gating was a strong dependence on the rate of pressure application. Patches subjected to various pressure ramps from 2.7 to 240 mmHg/s revealed a midpoint of activation almost independent of rate. However, the resultant channel activity was dramatically lower when pressure was applied slowly, especially at depolarizing pipette voltages. It appears that MscS prefers to respond in full to abrupt stimuli but manages to ignore those applied slowly, as if the gate were connected to the tension-transmitting element via a velocity-sensitive "dashpot." With slower ramps, channels inactivate during the passage through a narrow region of pressures below the activation midpoint. This property of "dumping" a slowly applied force may be important in environmental situations where rehydration of cells occurs gradually and release of osmolytes is not desirable. MscS often enters the inactivated state through subconducting states favored by depolarizing voltage. The inactivation rate increases exponentially with depolarization. Based on these results we propose a kinetic scheme and gating mechanism to account for the observed phenomenology in the framework of available structural information.
Keywords:mechanosensitive channel  voltage  tension  inactivation  osmoregulation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号