首页 | 本学科首页   官方微博 | 高级检索  
     


Selective hypoxia-cytotoxins based on vanadyl complexes with 3-aminoquinoxaline-2-carbonitrile-N1,N4-dioxide derivatives
Authors:Vieites Marisol  Noblía Pabla  Torre María H  Cerecetto Hugo  Laura Lavaggi María  Costa-Filho Antonio J  Azqueta Amaia  de Cerain Adela López  Monge Antonio  Parajón-Costa Beatriz  González Mercedes  Gambino Dinorah
Affiliation:Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, C. C. 1157, 11800 Montevideo, Uruguay.
Abstract:A new vanadyl complex with the formula VO(L1)2, where L1=3-amino-6(7)-chloroquinoxaline-2-carbonitrile N(1), N(4)-dioxide, has been synthesized and characterized by elemental analyses, conductometry, fast atom bombardment mass spectroscopy (FAB-MS) and electronic, Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. Results were compared with those previously reported for analogous vanadium complexes with other 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives as ligands. As an effort to develop novel metal-based selective hypoxia-cytotoxins and to improve bioavailability and pharmacological and toxicological properties of aminoquinoxaline carbonitrile N-dioxides bioreductive prodrugs, the new complex and VO(L)2 complexes, with L=3-amino-6(7)-bromoquinoxaline-2-carbonitrile N1,N4-dioxide (L2) and 3-amino-6(7)-methylquinoxaline-2-carbonitrile N1,N4-dioxide (L3), were subjected to cytotoxic evaluation in V79 cells in hypoxic and aerobic conditions. The complexes resulted in vitro more potent cytotoxins than the free ligands (i.e. potencies P(VO(L1)2)=3.0, P(L1)=9.0 microM) and Tirapazamine (P=30.0 microM) and showed excellent selective cytotoxicity in hypoxia, being no cytotoxic in oxia. In addition, the solubility in hydrophilic solvents resulted significantly higher for the vanadyl complexes than for the free ligands. These results could be indicative that complexation of the quinoxaline-2-carbonitrile N1,N4-dioxide derivatives with vanadium could improve their bioavailability. In addition, a new aspect of the series has been investigated. A detailed comparison of the electrochemical behavior of the free ligands and the complexes has been performed searching for a correlation between reduction potentials of the complexes and their activities and hypoxia selectivities.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号