首页 | 本学科首页   官方微博 | 高级检索  
     


Water-stress-induced xylem embolism in three species of conifers
Authors:J. S. SPERRY  M. T. TYREE
Affiliation:Department of Botany, University of Vermont, Burlington, Vermont 05405, and Northeastern Forest Experiment Station, P.O. Box 968, Burlington, Vermont 05402, U.S.A.
Abstract:Abstract. The mechanism of water-stress-induced xylem embolism was studied in three species of conifers: Abies balsamea (L.) Mill., Picca rubens Sarg, and Juniperus virginiana L. Each species showed a characteristic relationship between xylem tension and the loss of hydraulic conductivity by air embolism. Abics balsamea and Picca rubens began to embolize at tensions between 2 and 3 MPa and were completely non-conducting between 3 and 4 MPa. Juniperus virginiana was least vulnerable, beginning to embolize at 4 and still retaining approximately 10% conductivity at 10 MPa. As with a previous study of the vessel-bearing Accr saccharum Marsh., a brief perfusion of branch segments with an oxalic acid and calcium solution (10 and 0.1 mol m−3. respectively) increased the vulnerability of the xylem to embolism; this was especially pronounced in Abies balsamea . In order to test whether embolism was caused by aspiration of air into functional tracheids from neighbouring embolized, ones (the 'air-seeding'hypothesis), hydrated branch segments were injected with air at various pressures and measured for embolism. Results supported the air-seeding hypothesis because the relationship between injection pressure and embolism for both native and oxalic-calcium-treated segments was essentially the same as for embolism induced by xylem tension. Structural and experimental evidence suggested the air seeding occurred through inter-tracheid pit membranes when the thickened torus region of the membrane became displaced from its normal sealing position over the pit aperture. Thus, the embolism-inducing tension may be a function of pit membrane flexibility. This tension is of ecological significance because it reflects to some extent the range of xylem tensions to which a species is adapted.
Keywords:Abics balsamea (L.) Mill    Pieca rubens Sarg    Juniperus virginiana L    water stress    xylem embolism    hydraulic conductivity    conifers    wood anatomy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号