首页 | 本学科首页   官方微博 | 高级检索  
     


The rubber‐to‐glass transition in high sugar agarose systems
Authors:Areti Tsoga  Stefan Kasapis  Robert K. Richardson
Abstract:The small and large deformation properties of agarose in the presence of high levels of sugar were investigated. Mixtures can be described as lightly cross‐linked rubbers, which undergo vitrification upon cooling. The combined Williams–Landel–Ferry (WLF)/free volume framework was used to derive the glass transition temperature, the fractional free volume, and the thermal expansion coefficient of the glass. Sucrose‐rich cosolute crystallizes, but addition of the polymer encourages intermolecular interactions, which transform the mixture into a high viscosity glass. The mechanical properties of glucose syrup, a noncrystalline sugar, follow WLF behavior in the glass transition region and revert to an Arrhenius‐type prediction in the glassy state. Measurements on sugar samples and agarose–sugar mixtures were resolved into a basic function of temperature alone and a basic function of frequency (time) alone. The former traces the energetic cost of vitrification, which increases sharply with decreasing temperature. The latter, at long time scales, is governed by the infinite molecular weight of the agarose network. In the region of short times, the effect of free volume is active regardless of the sample composition. © 1999 John Wiley & Sons, Inc. Biopoly 49: 267–275, 1999
Keywords:glass transition  WLF, time function  temperature function  agarose  sugar
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号