首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In silico epitope-based vaccine design against influenza a neuraminidase protein: Computational analysis established on B- and T-cell epitope predictions
Institution:1. Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65431, Saudi Arabia;2. Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65431, Saudi Arabia
Abstract:ObjectiveInfluenza A virus belongs to the most studied virus and its mutant initiates epidemic and pandemics outbreaks. Inoculation is the significant foundation to diminish the risk of infection. To prevent an incidence of influenza from the transmission, various practical approaches require more advancement and progress. More efforts and research must take in front to enhance vaccine efficacy.MethodsThe present research emphasizes the development and expansion of a universal vaccine for the influenza virus. Research focuses on vaccine design with high efficacy. In this study, numerous computational approaches were used, covering a wide range of elements and ideas in bioinformatics methodology. Various B and T-cell epitopic peptides derived from the Neuraminidase protein N1 are recognized by these approaches. With the implementation of numerous obtained databases and bioinformatics tools, the different immune framework methods of the conserved sequences of N1 neuraminidase were analyzed. NCBI databases were employed to retrieve amino acid sequences. The antigenic nature of the neuraminidase sequence was achieved by the VaxiJen server and Kolaskar and Tongaonkar method. After screening of various B and T cell epitopes, one efficient peptide each from B cell epitope and T cell epitopes was assessed for their antigenic determinant vaccine efficacy. Identical two B cell epitopes were recognized from the N1 protein when analyzed using B-cell epitope prediction servers. The detailed examination of amino acid sequences for interpretation of B and T cell epitopes was achieved with the help of the ABCPred and Immune Epitope Database.ResultsComputational immunology via immunoinformatic study exhibited RPNDKTG as having its high conservancy efficiency and demonstrated as a good antigenic, accessible surface hydrophilic B-cell epitope. Among T cell epitope analysis, YVNISNTNF was selected for being a conserved epitope. T cell epitope was also analyzed for its allergenicity and cytotoxicity evaluation. YVNISNTNF epitope was found to be a non-allergen and not toxic for cells as well. This T-cell epitope with maximum world populace coverages was scrutinized for its association with the HLA-DRB1*0401 molecule. Results from docking simulation analyses showed YVNISNTNF having lower binding energy, the radius of gyration (Rg), RMSD values, and RMSE values which make the protein structure more stable and increase its ability to become an epitopic peptide for influenza virus vaccination.ConclusionsWe propose that this epitope analysis may be successfully used as a measurement tool for the robustness of an antigen–antibody reaction between mutant strains in the annual design of the influenza vaccine.
Keywords:Influenza  Epitope prediction  Docking simulation  Toxicity  Antigen-antibody reaction  Severe acute respiratory syndrome  Hemagglutinin  Neuraminidase  Health care personal  Influenza A  Human airway epithelial  Pandemic Disease Mexico 2009  Immune Epitope Database  Karplus & Schulz flexibility  Human leukocyte antigen  Half maximal inhibitory concentration  Molecular Mechanics Poisson-Boltzmann Surface Area  Root means square deviation  Root mean square fluctuation  Radius of gyration  Molecular dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号