首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Model for the feedback control system of bacterial growth. II. Growth in continuous culture
Authors:S Bleecken
Institution:Central Institute of Microbiology and Experimental Therapy, Academy of Science of the GDR, Jena.
Abstract:A mathematical model is developed that describes substrate limited bacterial growth in a continuous culture and that is based upon the conceptual framework elaborated in a previous paper for describing the feedback control system of cell growth S. Bleecken, (1988). J. theor. Biol. 133, 37.] Central to the theory are the ideas that the limiting substrate is converted into low molecular weight building blocks of macromolecular synthesis which again are converted into biomass (RNA and protein) and that the rates of RNA and protein synthesis are controlled by the intracellular concentration of building blocks. It is shown that a continuous culture can be simulated by two interconnected feedback control systems the actuating signals of which are limiting substrate concentration and the intracellular concentration of building blocks, respectively. Three types of steady-states are found to appear in a continuous culture, besides the well-known stable steady-state of the whole culture there exist two batchlike steady-states of the biotic part of the culture which are metastable. The model is used to analyse the steady-states and their stability properties as well as the dynamic responses of biomass, RNA, protein, building block and substrate concentrations to changes in environmental conditions. Especially the inoculation of a continuous culture and the effects of step changes in dilution rate, inlet substrate concentration and growth temperature are studied in detail. Relations between the growth behaviour of a single cell and that of a continuous culture are derived. The RNA to protein ratio is introduced as a rough measure of the physiological state of cells and it is shown that a cell reacts to environmental changes with a simple pattern of basic responses in growth rate and physiological state. There are reasons to assume that the model presented is the minimal version of a structured model of bacterial growth and represents an optimum compromise between biological relevance and mathematical practicability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号