首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insect herbivory in an intact forest understory under experimental CO2 enrichment
Authors:Jason G Hamilton  Arthur R Zangerl  May R Berenbaum  Jeffrey Pippen  Mihai Aldea  Evan H DeLucia
Institution:(1) Department of Biology, Ithaca College, Ithaca, NY 14850, USA;(2) Department of Entomology, University of Illinois, Urbana, IL 61801, USA;(3) Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA;(4) Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
Abstract:Human-induced increases in atmospheric CO2 concentration have the potential to alter the chemical composition of plant tissue, and thereby affect the amount of tissue consumed by herbivorous arthropods. At the Duke Forest free-air concentration enrichment (FACE) facility in North Carolina (FACTS–1 research facility), we measured the amount of leaf tissue damaged by insects and other herbivorous arthropods during two growing seasons in a deciduous forest understory continuously exposed to ambient (360 mgrl l–1) and elevated (~560 µl l–1) CO2 conditions. In 1999, there was a significant interaction between CO2 and species such that winged elm (Ulmus alata) showed lower herbivory in elevated CO2 plots, whereas red maple (Acer rubra) and sweetgum (Liquidambar styraciflua) did not. In 2000, our results did not achieve statistical significance but the magnitude of the result was consistent with the 1999 results. In 1999 and 2000, we found a decline (10–46%) in community-level herbivory in elevated CO2 plots driven primarily by reductions in herbivory on elm. The major contribution to total leaf damage was from missing tissue (66% of the damaged tissue), with galls, skeletonized, and discolored tissue making smaller contributions. It is unclear whether the decline in leaf damage is a result of altered insect populations, altered feeding, or a combination. We were not able to quantify insect populations, and our measurements did not resolve an effect of elevated CO2 on leaf chemical composition (total nitrogen, carbon, C/N, sugars, phenolics, starch). Despite predictions from a large number of single-species studies that herbivory may increase under elevated CO2, we have found a decrease in herbivory in a naturally established forest understory exposed to a full suite of insect herbivores and their predators.
Keywords:Arthropod herbivores  Elevated carbon dioxide  FACE  Folivory
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号