首页 | 本学科首页   官方微博 | 高级检索  
   检索      


GDNF and insulin cooperate to enhance the proliferation and differentiation of enteric crest‐derived cells
Authors:Paul J Focke  Andrew R Swetlik  Justin L Schilz  Miles L Epstein
Abstract:Previously we have shown that glial derived neurotrophic factor (GDNF) stimulates modest increases in the proliferation of avian enteric crest‐derived cells and similar increases in the phosphorylation of the phosphoinositide 3–kinase (PI3K) downstream substrate Akt (Akt‐P). In the present study we tested whether GDNF‐independent increases in PI3K activation would be sufficient to support proliferation. We found that insulin induces a large increase in the phosphorylation of Akt and can initiate DNA synthesis in avian enteric crest‐derived cells, but is unable to maintain proliferation over time in culture, measured by BrdU incorporation. GDNF can also initiate DNA synthesis, but it too is unable to maintain BrdU incorporation in cultured enteric crest‐derived cells. Sustained incorporation of BrdU after 16–48 h in culture is shown to be dependent on a combination of GDNF and insulin. Using a phospho‐specific antibody, we found Akt‐P levels to be similar in the proliferating (BrdU incorporation maintained from 16–48 h in culture) and nonproliferating populations, suggesting that Akt‐P levels were not solely controlling the extent of BrdU incorporation. A minimum level of PI3K activation, however, is required, as shown by the dose‐dependent reduction in proliferation with the PI3K inhibitor LY‐294002. We conclude that the integrity of the PI3K pathway is essential for enteric crest‐derived cell proliferation, but that the absolute levels of Akt‐P do not determine the extent of proliferation. The enhanced proliferation in cultures containing both GDNF and insulin suggests that other pathways are involved, including the possibility that PI3K downstream effectors other than Akt are important in the regulation of avian enteric crest‐derived cell proliferation. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 151–164, 2003
Keywords:avian  Akt  enteric nervous system  quail embryo  PI 3‐kinase  Hu  LY294002
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号