Immobilization of Irpex lacteus to liquid-core alginate beads and their application to degradation of pollutants |
| |
Authors: | Jan Šíma Rachel Milne Čeněk Novotný Pavel Hasal |
| |
Affiliation: | 1.Department of Chemical Engineering,University of Chemistry and Technology, Prague,Prague 6,Czech Republic;2.Institute of Microbiology ASCR,Prague 4,Czech Republic |
| |
Abstract: | White rot fungi (WRF) are applicable to biodegradation of recalcitrant pollutants. However, excessive biomass growth typical for WRF cultivation can hinder their large scale applications. Therefore, immobilization of Irpex lacteus to liquid-core alginate beads restricting excessive mycelium growth and simultaneously keeping high degradation rate of pollutants was tested. Effective diffusivities of dyes to the beads varied from (2.98 ± 0.69) × 10?10 to (10.27 ± 2.60) × 10?10 m2/s. Remazol Brilliant Blue R (RBBR), Reactive Orange 16 (RO16), and Naphthol Blue Black (NBB) were used as model dyes. The immobilized fungus decolorized model dyes when applied both in microwell plates and in fluidized bed reactors. Using the microwell plates, the apparent reaction rate constants ranged from (2.06 ± 0.11) × 10?2 to (11.06 ± 0.27) × 10?2 1/h, depending on the dye used and its initial concentration. High initial concentrations negatively affected the dye decolorization rate. No fungal growth outside the beads was observed in fluidized bed reactors and thus no operational problems linked to an excessive biomass growth occurred. When RBBR was decolorized in subsequent batches in the fluidized bed reactor, the apparent reaction rate constant increased from (11.63 ± 0.35) × 10?2 to (29.26 ± 7.19) × 10?2 1/h. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|