首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolutionary and physiological variation in cardiac troponin C in relation to thermal strategies of fish
Authors:Yang H  Velema J  Hedrick M S  Tibbits G F  Moyes C D
Institution:Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Abstract:Striated muscle contraction is initiated when troponin C (TnC) binds Ca(2+), which activates actinomyosin ATPase. We investigated (i) the variation between cardiac TnC (cTnC) primary structure within teleost fish and (ii) the pattern of TnC expression in response to temperature acclimation. There were few differences between rainbow trout (Oncorhynchus mykiss), yellowfin tuna (Thunnus albacares), yellow perch (Perca flavescens), goldfish (Carassius auratus), white sucker (Catostomus commersoni), and icefish (Chaenocephalus aceratus) in cTnC amino acid sequence. No variation existed in the regulatory Ca(2+)-binding site (site 2). The site 3 and 4 substitutions were limited to residues not directly involved in Ca(2+) coordination. Fish cTnC primary structure was highly conserved between species (93%-98%) and collectively divergent from the highly conserved sequence seen in birds and mammals. Northern blots and polymerase chain reaction showed that thermal acclimation of trout (3 degrees, 18 degrees C) did not alter the TnC isoform pattern. While cardiac and white muscle had the expected isoforms-cTnC and fast troponin C (fTnC), respectively-red muscle unexpectedly expressed primarily ftnC. Cold acclimation did not alter myofibrillar ATPase Ca(2+) sensitivity, but maximal velocity increased by 60%. We found no evidence that TnC variants, arising between species or in response to thermal acclimation, play a major role in mitigating the effects of temperature on contractility of the adult fish heart.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号