The effects of phosphorylation and dephosphorylation of brain myosin on its actin-activated Mg2+-ATPase and contractile activities |
| |
Authors: | S Matsumura T Takashima H Ohmori A Kumon |
| |
Affiliation: | Department of Biochemistry, Saga Medical School. |
| |
Abstract: | Purified bovine brain myosin contained approximately 1 and 3 mol of protein-bound phosphate/mol myosin in the light chains and heavy chains, respectively. Large portions of this light chain- and heavy chain-bound phosphate (about 0.8 and 2.4 mol, respectively) were removed by incubation with a brain phosphoprotein phosphatase and potato acid phosphatase, respectively. Upon phosphorylation of the dephosphorylated brain myosin with myosin light chain kinase and casein kinase II, about 1.6 and 3.0 mol of phosphate was incorporated into the light chains and heavy chains, respectively, while much lower levels of phosphate were incorporated into the non-dephosphorylated brain myosin under the same conditions. The actin-activated Mg2+-ATPase activity of brain myosin rephosphorylated with myosin light chain kinase was about twice as high as that of dephosphorylated brain myosin (about 30 and 15 nmol phosphate/mg/min, respectively). On the other hand, whereas the rephosphorylated brain myosin superprecipitated rapidly with F-actin, the rate of superprecipitation of the dephosphorylated brain myosin was extremely low. Under appropriate conditions, a loose network of tiny superprecipitates, which formed initially throughout the solution, contracted to form eventually a large and dense particle. These results indicate that phosphorylation of the light chains of brain myosin is a prerequisite for the contraction of brain actomyosin. The role of phosphorylation of the heavy chains by casein kinase II remains to be elucidated. |
| |
Keywords: | |
|
|