首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alkylation of an active-site cysteinyl residue during substrate-dependent inactivation of Escherichia coli S-adenosylmethionine decarboxylase
Authors:E Diaz  D L Anton
Institution:Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware 19880-0328.
Abstract:S-Adenosylmethionine decarboxylase from Escherichia coli is a member of a small class of enzymes that uses a pyruvoyl prosthetic group. The pyruvoyl group is proposed to form a Schiff base with the substrate and then act as an electron sink facilitating decarboxylation. We have previously shown that once every 6000-7000 turnovers the enzyme undergoes an inactivation that results in a transaminated pyruvoyl group and the formation of an acrolein-like species from the methionine moiety. The acrolein then covalently alkylates the enzyme Anton, D. L., & Kutny, R. (1987) Biochemistry 26, 6444]. After reduction of the alkylated enzyme with NaBH4, a tryptic peptide with the sequence Ala-Asp-Ile-Glu-Val-Ser-Thr-S-(3-hydroxypropyl)Cys]-Gly-Val-Ile-Ser-Pro - Leu-Lys was isolated. This corresponds to acrolein alkylation of a cysteine residue in the second tryptic peptide from the NH2 terminal of the alpha-subunit Anton, D. L., & Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822]. The modified residue derived is from Cys-140 of the proenzyme Tabor, C. W., & Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040] and lies in the only sequence conserved between rat liver and E. coli S-adenosylmethionine decarboxylase Pajunen et al. (1988) J. Biol. Chem. 263, 17040-17049]. We suggest that the alkylated Cys residue could have a role in the catalytic mechanism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号