首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The requirement of zinc for improvement of crop yield and mineral nutrition in the maize–mungbean–rice system
Authors:M A Hossain  M Jahiruddin  M R Islam  M H Mian
Institution:(1) Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
Abstract:A study was made over 3 years to find out an optimum rate of Zn application for the maize–mungbean–rice cropping system in a calcareous soil of Bangladesh. Zinc application was made at 0, 2 and 4 kg ha−1 for maize (cv. Pacific 984, Thai hybrid) and at 0, 1 and 2 kg ha−1 for rice (cv. BRRI dhan33), with no Zn application for mungbean (cv. BARI mung5). Effect of Zn was evaluated in terms of yield and mineral nutrients contents (N, P, S and Zn). All the three crops responded significantly to Zn application. The optimum rate of Zn for the maize–mungbean–rice cropping system was found to be 4–0–2 kg ha−1 for the first year and 2–0–2 kg ha−1 for subsequent years particularly when mungbean residue was removed, and such rates for mungbean residue incorporation being 4–0–1 and 2–0–1 kg ha−1, respectively. For all crops, the Zn and N concentrations of grain were significantly increased with Zn application. For the case of grain-S, the concentration was significantly increased for maize and mungbean, but it remained unchanged for rice. The grain-P concentration on the other hand tended to decrease with Zn application. For maize, the grain-Zn concentration increased to 27.0 μg g−1 due to 2 kg Zn ha−1 treatment from 16.5 μg g−1 for Zn control and at higher Zn rate (4 kg Zn ha−1) the increment was very minimum. Another field experiment was performed over 3 years on the same soil to screen out maize varieties for Zn efficiency. Of the eight varieties tested, the BARI maize 6 and BARI hybrid maize 3 were found Zn in-responsive (Zn efficient) and the others Zn responsive (Zn-inefficient).
Keywords:Maize  Mungbean  Rice  Zinc
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号