首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NADH-linked substrate dependence of peroxide-induced respiratory inhibition and calcium efflux in isolated renal mitochondria
Authors:A A Vlessis
Institution:Department of Surgery, Oregon Health Sciences University, Portland 97201.
Abstract:Peroxide-induced state 3 respiratory inhibition and Ca2+ efflux in isolated renal mitochondria exhibited a NADH-linked substrate dependence. ADP-stimulated respiratory rates in the presence of various concentrations of tert-butyl hydroperoxide (tBOOH, 0-1000 nmol/mg protein) were determined using glutamate, beta-hydroxybutyrate, or pyruvate as substrates. Pyruvate-driven respiration was most sensitive to inhibition (Ki approximately equal to 75 nmol of tBOOH/mg protein) followed by beta-hydroxybutyrate and glutamate (Ki approximately equal to 150 nmol of tBOOH/mg protein for each). Calcium (5-10 nmol/mg protein) potentiated tBOOH-induced respiratory inhibition using all three substrates. Mitochondrial Ca2+ efflux, induced by tBOOH, was most pronounced with pyruvate as substrate. Glutamate prevented Ca2+ efflux while the efflux rate with beta-hydroxybutyrate was intermediate between glutamate and pyruvate. The substrate-dependent pattern of tBOOH-induced NAD(P)H (NADH plus NADPH) and cytochrome b oxidation was similar to that seen for respiratory inhibition and Ca2+ efflux suggesting that NAD(P)H may be a common factor in both responses. Low tBOOH concentrations inhibited pyruvate dehydrogenase flux while higher concentrations enhanced pyruvate dehydrogenase flux and activation. The results are discussed in relation to currently proposed theories of reactive oxygen-induced respiratory inhibition, Ca2+ efflux, and reperfusion injury.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号