首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of coated vesicle chloride channel activity and acidification by reversible protein kinase A-dependent phosphorylation.
Authors:A E Mulberg  B M Tulk  M Forgac
Institution:Department of Molecular and Cellular Physiology, Tufts University School of Medicine, Boston, Massachusetts.
Abstract:We have previously shown that activity of a Cl- channel is required for acidification of clathrin-coated vesicles by the coated vesicle (H+)-ATPase (Arai, H., Pink, S. and Forgac, M. (1989) Biochemistry 28, 3075-3082). We demonstrate that activity of the coated vesicle Cl- channel is modulated by phosphorylation. Cl- conductance was measured in a reconstituted preparation of coated vesicle membrane proteins using the Cl(-)-sensitive fluorescence probe, 6-methoxy-N-(3-sulfopropyl)quinolinium. Treatment of coated vesicle membranes with alkaline phosphatase resulted in a 25 +/- 5% decrease in Cl- channel activity. A parallel decrease in ATP-dependent acidification of coated vesicles was also observed. The decrease in Cl- conductance and ATP-dependent acidification was reversed by treatment with protein kinase A and MgATP; the alkaline phosphatase inhibitor, sodium orthovanadate, blocked the inhibition of acidification. These results indicate that Cl- conductance in coated vesicles is modulated by a protein kinase A-dependent phosphorylation and that this modulation in turn affects ATP-dependent acidification.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号