首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interplay between Selenium Levels,Selenoprotein Expression,and Replicative Senescence in WI-38 Human Fibroblasts
Authors:Yona Legrain  Zahia Touat-Hamici  Laurent Chavatte
Institution:From the Centre de Génétique Moléculaire, CNRS, UPR3404, Gif-sur-Yvette 91198 Cedex, France and ;the §Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS/UPPA, UMR5254, Pau 64000, France
Abstract:Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.
Keywords:Cellular Senescence  Glutathione Peroxidase  Selenium  Thioredoxin Reductase  Translation Control  SECIS  UGA Recoding  Selenoproteome
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号