首页 | 本学科首页   官方微博 | 高级检索  
     


Refining conformational ensembles of flexible proteins against small-angle x-ray scattering data
Affiliation:1. Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
Abstract:Intrinsically disordered proteins and flexible regions in multidomain proteins display substantial conformational heterogeneity. Characterizing the conformational ensembles of these proteins in solution typically requires combining one or more biophysical techniques with computational modeling or simulations. Experimental data can either be used to assess the accuracy of a computational model or to refine the computational model to get a better agreement with the experimental data. In both cases, one generally needs a so-called forward model (i.e., an algorithm to calculate experimental observables from individual conformations or ensembles). In many cases, this involves one or more parameters that need to be set, and it is not always trivial to determine the optimal values or to understand the impact on the choice of parameters. For example, in the case of small-angle x-ray scattering (SAXS) experiments, many forward models include parameters that describe the contribution of the hydration layer and displaced solvent to the background-subtracted experimental data. Often, one also needs to fit a scale factor and a constant background for the SAXS data but across the entire ensemble. Here, we present a protocol to dissect the effect of the free parameters on the calculated SAXS intensities and to identify a reliable set of values. We have implemented this procedure in our Bayesian/maximum entropy framework for ensemble refinement and demonstrate the results on four intrinsically disordered proteins and a protein with three domains connected by flexible linkers. Our results show that the resulting ensembles can depend on the parameters used for solvent effects and suggest that these should be chosen carefully. We also find a set of parameters that work robustly across all proteins.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号