首页 | 本学科首页   官方微博 | 高级检索  
     


Amino acids change solute affinity for lipid bilayers
Authors:Katelyn M. Duncan  William H. Steel  Robert A. Walker
Affiliation:1. Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana;2. Department of Chemistry, York College of Pennsylvania, York, Pennsylvania;3. Montana Materials Science Program, Montana State University, Bozeman, Montana
Abstract:Time-resolved fluorescence and differential scanning calorimetry (DSC) were used to examine how two amino acids, L-phenylalanine (L-PA) and N-acetyl-DL-tryptophan (NAT), affect the temperature-dependent membrane affinity of two structurally similar coumarin solutes for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles. The 7-aminocoumarin solutes, coumarin 151 (C151) and coumarin 152 (C152), differ in their substitution at amine position—C151 is a primary amine, and C152 is a tertiary amine—and both solutes show different tendencies to associate with lipid bilayers consistent with differences in their respective log-P-values. Adding L-PA to the DPPC vesicle solution did not change C151’s propensity to remain freely solvated in aqueous solution, but C152 showed a greater tendency to partition into the hydrophobic bilayer interior at temperatures below DPPC’s gel-liquid crystalline transition temperature (Tgel-lc). This finding is consistent with L-PA’s ability to enhance membrane permeability by disrupting chain-chain interactions. Adding NAT to DPPC-vesicle-containing solutions changed C151 and C152 affinity for the DPPC membranes in unexpected ways. DSC data show that NAT interacts strongly with the lipid bilayer, lowering Tgel-lc by up to 2°C at concentrations of 10 mM. These effects disappear when either C151 or C152 is added to solution at concentrations below 10 μM, and Tgel-lc returns to a value consistent with unperturbed DPPC bilayers. Together with DSC results, fluorescence data imply that NAT promotes coumarin adsorption to the vesicle bilayer surface. NAT’s effects diminish above Tgel-lc and imply that unlike L-PA, NAT does not penetrate into the bilayer but instead remains adsorbed to the bilayer’s exterior. Taken in their entirety, these discoveries suggest that amino acids—and by inference, polypeptides and proteins—change solute affinity for lipid bilayers with specific effects that depend on individualized amino-acid-lipid-bilayer interactions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号