首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane-dependent heterogeneity of LHCII characterized using single-molecule spectroscopy
Authors:Premashis Manna  Thomas Davies  Madeline Hoffmann  Matthew P Johnson  Gabriela S Schlau-Cohen
Institution:1. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts;2. Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
Abstract:In green plants, light harvesting complex of Photosystem II (LHCII) absorbs and transports excitation energy toward the photosynthetic reaction centers and serves as a site for energy-dependent nonphotochemical quenching (qE), the photoprotective dissipation of energy as heat. LHCII is thought to activate dissipation through conformational changes that change the photophysical behaviors. Understanding this balance requires a characterization of how the conformations of LHCII, and thus its photophysics, are influenced by individual factors within the membrane environment. Here, we used ensemble and single-molecule fluorescence to characterize the excited-state lifetimes and switching kinetics of LHCII embedded in nanodisc- and liposome-based model membranes of various sizes and lipid compositions. As the membrane area decreased, the quenched population and the rate of conformational dynamics both increased because of interactions with other proteins, the aqueous solution, and/or disordered lipids. Although the conformational states and dynamics were similar in both thylakoid and asolectin lipids, photodegradation increased with thylakoid lipids, likely because of their charge and pressure properties. Collectively, these findings demonstrate the ability of membrane environments to tune the conformations and photophysics of LHCII.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号