首页 | 本学科首页   官方微博 | 高级检索  
     


Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure
Authors:Darren Yang  Benjamin Boyer  Chantal Prévost  Claudia Danilowicz  Mara Prentiss
Affiliation:1.School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA;2.Laboratoire de Biochimie Théorique, CNRS UPR 9080, Univ Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France;3.Department of Physics, Harvard University, Cambridge, MA 02138, USA
Abstract:RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号