首页 | 本学科首页   官方微博 | 高级检索  
     


Molecules,morphology and Mimeoma scarabs: evolutionary and taxonomic implications for a palm‐associated scarab group
Authors:MATTHEW R. MOORE  CRISTIAN F. BEZA‐BEZA  DAVID A. WICKELL  JAMES B. BECK  MARY L. JAMESON
Affiliation:1. Department of Biological Sciences, Wichita State University, Wichita, KS, U.S.A.;2. Department of Entomology and Nematology, University of Florida, Gainesville, FL, U.S.A.;3. Department of Biological Sciences, University of Memphis, Memphis, TN, U.S.A.
Abstract:Cyclocephaline scarabs, the second largest tribe of rhinoceros beetles, are important pollinators of early‐diverging angiosperm families in the tropics. The evolutionary history of cyclocephaline genera is poorly resolved and several genera are thought to be nonmonophyletic. We assess the monophyly of Mimeoma Casey, a group of Neotropical palm‐feeding scarabs, and its relationship to Cyclocephala with a phylogenetic analysis of 2899 bp of DNA sequence data and 18 morphological characters. All five species of Mimeoma were included in analyses along with species of Cyclocephala Dejean, Dyscinetus Harold and Tomarus Erichson as outgroup taxa. Nearly complete 28S, 12S and CO1 data were collected from 26 of 29 specimens, of which 16 samples were pinned, museum specimens. 28S data strongly support a nonmonophyletic Mimeoma; mitochondrial data (CO1 and 12S) suggest that Mimeoma species are nested within an apical clade of other Cyclocephala species; combined molecular and morphological data identify two strongly supported clades of Mimeoma species but do not support their sister relationship. Combined data show that Mimeoma species are nested within Cyclocephala, thus rendering Cyclocephala paraphyletic. Mimeoma is synonymized within Cyclocephala resulting in the following new combinations: Cyclocephala acuta Arrow n.comb ., Cyclocephala englemani (Ratcliffe) n.comb ., Cyclocephala maculata Burmeister n.comb ., Cyclocephala nigra (Endrödi) n.comb . and Cyclocephala signatoides Höhne n.comb . Our results demonstrate that pinned, museum specimens can be used to obtain DNA sequence data (particularly high‐copy gene regions) for evolutionary studies, and provide the first empirical support that host‐plant associations within cyclocephaline scarab clades are conserved at the plant family‐level.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号