首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major
Authors:Lye Lon-Fye  Cunningham Mark L  Beverley Stephen M
Affiliation:Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Abstract:Biopterin is required for growth of the protozoan parasite Leishmania and is salvaged from the host through the activities of a novel biopterin transporter (BT1) and broad-spectrum pteridine reductase (PTR1). Here we characterize Leishmania major quinonoid-dihydropteridine reductase (LmQDPR), the key enzyme required for regeneration and maintenance of H(4)biopterin pools. LmQDPR shows good homology to metazoan quinonoid-dihydropteridine reductase and conservation of domains implicated in catalysis and regulation. Unlike other organisms, LmQDPR is encoded by a tandemly repeated array of 8-9 copies containing LmQDPR plus two other genes. QDPR mRNA and enzymatic activity were expressed at similar levels throughout the infectious cycle. The pH optima, kinetic properties, and substrate specificity of purified LmQDPR were found to be similar to that of other qDPRs, although it lacked significant activity for non-quinonoid pteridines. These and other data suggest that LmQDPR is unlikely to encode the dihydrobiopterin reductase activity (PTR2) described previously. Similarly LmQDPR is not inhibited by a series of antifolates showing anti-leishmanial activity beyond that attributable to dihydrofolate reductase or PTR1 inhibition. qDPR activity was found in crude lysates of Trypanosoma brucei and Trypanosoma cruzi, further emphasizing the importance of H(4)biopterin throughout this family of human parasites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号