首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Serine phosphorylation on position 1033 of vinculin impacts cellular mechanics
Authors:Vera Auernheimer  Wolfgang H Goldmann
Institution:Department of Physics, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
Abstract:This study evaluates the influence of S1033 vinculin phosphorylation on the mechanical properties of cells. We demonstrate that MEFvcl KO cells transfected with the non-phosphorylatable eGFP-vinculin mutant S1033A are of lower stiffness compared to MEFvcl Rescue and phospho-mimicking mutant S1033D cells, which were of similar stiffness. Analogous, 2D traction microscopy indicates that MEFvcl Rescue and MEF mutant S1033D cells generate similar strain energy, but mutant S1033A cells display ∼50% less strain energy. Fluorescence recovery after photobleaching demonstrates that the recovery time for mutant S1033A was significantly lower compared to MEFvcl Rescue and mutant S1033D and that the mobile fraction was smaller for MEFvcl Rescue and mutant S1033D than for mutant S1033A cells. This indicates that serine phosphorylation is required for the activation of vinculin and force transmission in focal adhesions.
Keywords:pS1033  Vinculin  Focal adhesions  Magnetic tweezer  Traction microscopy  FRAP
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号