首页 | 本学科首页   官方微博 | 高级检索  
     


Active vitamin D possesses beneficial effects on the interaction between muscle and bone
Authors:Ken-ichiro Tanaka  Ippei Kanazawa  Toru Yamaguchi  Shozo Yano  Hiroshi Kaji  Toshitsugu Sugimoto
Affiliation:1. Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan;2. Department of Laboratory Medicine, Shimane University Faculty of Medicine, Izumo, Japan;3. Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
Abstract:Vitamin D deficiency and advanced glycation end products (AGEs) are suggested to be involved in the pathogenesis of osteoporosis and sarcopenia. However, the effects of vitamin D and AGEs on myogenesis and the interaction between muscle and bone remains still unclear. We previously showed that osteoglycin (OGN) is secreted from myoblasts and stimulates osteoblastic differentiation, suggesting that it plays important roles in the interaction between muscle and bone. The aim of this study is thus to examine the effects of vitamin D and AGEs on myoblastic differentiation of C2C12 cells and osteoblastic differentiation of osteoblastic MC3T3-E1 cells through OGN expression. 1α,25-dihydroxyvitamin D3 (1,25D) and eldecalcitol, an active vitamin D analog, induced the expression of MyoD, myogenin and OGN, and these effects were abolished by vitamin D receptor (VDR) suppression by siRNA in C2C12 cells. Moreover, conditioned medium from 1,25D-pretreated C2C12 cells stimulated the expression of type 1 collagen and alkaline phosphatase in MC3T3-E1 cells, compared to control medium from 1,25D-untreated C2C12 cells. In contrast, conditioned medium from VDR-suppressed and 1,25D-pretreated C2C12 cells showed no effects. AGE2 and AGE3 suppressed the expression of MyoD, myogenin and OGN in C2C12 cells. Moreover, 1,25D blunted the AGEs’ effects. In conclusion, these findings showed for the first time that active vitamin D plays important roles in myogenesis and muscle-induced osteoblastogenesis through OGN expression. Active vitamin D treatment may rescue the AGEs-induced sarcopenia as well as – suppressed osteoblastic differentiation via OGN expression in myoblasts.
Keywords:Advanced glycation end products   Osteoglycin   Vitamin D   Muscle   Eldecalcitol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号