首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Trapping of metalloradical intermediates of the S-states at liquid helium temperatures. Overview of the phenomenology and mechanistic implications
Authors:Petrouleas Vasili  Koulougliotis Dionysios  Ioannidis Nikolaos
Institution:Institute of Materials Science, NCSR Demokritos, 15310 Aghia Paraskevi Attikis, Greece. vpetr@ ims.demokritos.gr
Abstract:The oxygen-evolving complex (OEC) of photosystem II (PSII) consists of a Mn cluster (believed to be tetranuclear) and a tyrosine (Tyr Z or Y(Z)). During the sequential absorption of four photons by PSII, the OEC undergoes four oxidative transitions, S(0) to S(1), ..., S(3) to (S(4))S(0). Oxygen evolves during the S(3) to S(0) transition (S(4) being a transient state). Trapping of intermediates of the S-state transitions, particularly those involving the tyrosyl radical, has been a goal of ultimate importance, as that can test critically models employing a role of Tyr Z in proton (in addition to electron) transfer, and also provide important clues about the mechanism of water oxidation. Until very recently, however, critical experimental information was lacking. We review and evaluate recent observations on the trapping of metalloradical intermediates of the S-state transitions, at liquid helium temperatures. These transients are assigned to Tyr Z(*) magnetically interacting with the Mn cluster. Besides the importance of trapping intermediates of this unique catalytic mechanism, liquid helium temperatures offer the additional advantage that proton motions (unlike electron transfer) are blocked except perhaps across strong hydrogen bonds. This paper summarizes the recent observations and discusses the constraints that the phenomenology imposes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号