首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of disulfide bonds in conformational stability and folding of 5'-deoxy-5'-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus
Authors:Cacciapuoti Giovanna  Fuccio Francesca  Petraccone Luigi  Del Vecchio Pompea  Porcelli Marina
Institution:Dipartimento di Biochimica e Biofisica "F. Cedrangolo", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy. giovanna.cacciapuoti@unina2.it
Abstract:Sulfolobus solfataricus 5'-deoxy-5'-melthylthioadenosine phosphorylase II (SsMTAPII), is a hyperthermophilic hexameric protein with two intrasubunit disulfide bonds (C138-C205 and C200-C262) and a CXC motif (C259-C261). To get information on the role played by these covalent links in stability and folding, the conformational stability of SsMTAPII and C262S and C259S/C261S mutants was studied by thermal and guanidinium chloride (GdmCl)-induced unfolding and analyzed by fluorescence spectroscopy, circular dichroism, and SDS-PAGE. No thermal unfolding transition of SsMTAPII can be obtained under nonreducing conditions, while in the presence of the reducing agent Tris-(2-carboxyethyl) phosphine (TCEP), a Tm of 100°C can be measured demonstrating the involvement of disulfide bridges in enzyme thermostability. Different from the wild-type, C262S and C259S/C261S show complete thermal denaturation curves with sigmoidal transitions centered at 102°C and 99°C respectively. Under reducing conditions these values decrease by 4°C and 8°C respectively, highlighting the important role exerted by the CXC disulfide on enzyme thermostability. The contribution of disulfide bonds to the conformational stability of SsMTAPII was further assessed by GdmCl-induced unfolding experiments carried out under reducing and nonreducing conditions. Thermal unfolding was found to be reversible if the protein was heated in the presence of TCEP up to 90°C but irreversible above this temperature because of aggregation. In analogy, only chemical unfolding carried out in the presence of reducing agents resulted in a reversible process suggesting that disulfide bonds play a role in enzyme denaturation. Thermal and chemical unfolding of SsMTAPII occur with dissociation of the native hexameric state into denatured monomers, as indicated by SDS-PAGE.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号