首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An avidin-like domain that does not bind biotin is adopted for oligomerization by the extracellular mosaic protein fibropellin
Authors:Yanai Itai  Yu Yong  Zhu Xiahui  Cantor Charles R  Weng Zhiping
Institution:Biomedical Engineering Department, 44 Cummington Street, Boston University, Boston, MA 02215, USA.
Abstract:The protein avidin found in egg white seems optimized for binding the small vitamin biotin as a stable homotetramer. Indeed, along with its streptavidin ortholog in the bacterium Streptomyces avidinii, this protein shows the strongest known noncovalent bond of a protein with a small ligand. A third known member of the avidin family, as similar to avidin as is streptavidin, is found at the C-terminal ends of the multidomain fibropellin proteins found in sea urchin. The fibropellins form a layer known as the apical lamina that surrounds the sea urchin embryo throughout development. Based upon the structure of avidin, we deduced a structural model for the avidin-like domain of the fibropellins and found that computational modeling predicts a lack of biotin binding and the preservation of tetramerization. To test this prediction we expressed and purified the fibropellin avidin-like domain and found it indeed to be a homotetramer incapable of binding biotin. Several lines of evidence suggest that the avidin-like domain causes the entire fibropellin protein to tetramerize. We suggest that the presence of the avidin-like domain serves a structural (tetrameric form) rather than functional (biotin-binding) role and may therefore be a molecular instance of exaptation-the modification of an existing function toward a new function. Finally, based upon the oligomerization of the avidin-like domain, we propose a model for the overall structure of the apical lamina.
Keywords:avidin-like domain  biotin  fibropellin  streptavidin  avidin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号