首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of structural and evolutionary contributions to deleterious mutation prediction
Authors:Saunders Christopher T  Baker David
Affiliation:Department of Genome Sciences, University of Washington, Seattle 98195, USA.
Abstract:Methods for automated prediction of deleterious protein mutations have utilized both structural and evolutionary information but the relative contribution of these two factors remains unclear. To address this, we have used a variety of structural and evolutionary features to create simple deleterious mutation models that have been tested on both experimental mutagenesis and human allele data. We find that the most accurate predictions are obtained using a solvent-accessibility term, the C(beta) density, and a score derived from homologous sequences, SIFT. A classification tree using these two features has a cross-validated prediction error of 20.5% on an experimental mutagenesis test set when the prior probability for deleterious and neutral cases is equal, whereas this prediction error is 28.8% and 22.2% using either the C(beta) density or SIFT alone. The improvement imparted by structure increases when fewer homologs are available: when restricted to three homologs the prediction error improves from 26.9% using SIFT alone to 22.4% using SIFT and the C(beta) density, or 24.8% using SIFT and a noisy C(beta) density term approximating the inaccuracy of ab initio structures modeled by the Rosetta method. We conclude that methods for deleterious mutation prediction should include structural information when fewer than five to ten homologs are available, and that ab initio predicted structures may soon be useful in such cases when high-resolution structures are unavailable.
Keywords:deleterious mutation prediction   protein mutagenesis   human disease allele   protein evolution   protein structure prediction
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号