首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Docking on the DNA G-quadruplex: a molecular electrostatic potential study
Authors:Mondragón-Sánchez Juan Antonio  Santamaria Ruben  Garduño-Juárez Ramón
Institution:Departamento de Física Teórica, Instituto de Física, UNAM, Circuito de la Investigación Científica, Ciudad Universitaria, 04510 México, D.F.. jantonioms@yahoo.com.mx
Abstract:The G-quadruplexes are four-stranded nucleic acid structures with guanine-rich sequences that play important biological roles in, for example, regulating telomerase association and activity. Recent evidence supports the hypothesis that the telomeric G-quadruplex DNA represents a target of novel anticancer drug medication. In this work, we present results of the molecular electrostatic potential (MEP), together with the HOMO and LUMO frontier orbitals, which are physical quantities of concern in the docking of compounds on the G-quadruplex. The calculations are performed in the frame of density functional theory at the B88LYP/6-31G* level of theory. Additional functionals that introduce dispersion effects were also taken into consideration. The MEP potential and electron density of the frontier molecular orbitals of the G-quadruplex exhibit topological deformations due to the coiled conformation of the compound when they are compared with the MEP and corresponding electron density of a DNA duplex with similar nucleic acid composition. The electrostatic active zone of the G-quadruplex is localized on the top part of the quadruplex structure where the MEP acquires the most negative values. Additional computations on a set of three daunomycins, a common anticancer drug for duplex DNA, indicate an electrostatic fastening between the quadruplex and the set of daunomycins. In this regard, the G-quadruplex electrostatic interactions favor the stacking of ligands. Finally, some implications on molecular drug design are briefly discussed.
Keywords:DNA  G‐quadruplex  molecular electrostatic potential  reactivity
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号