首页 | 本学科首页   官方微博 | 高级检索  
     


Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing
Authors:R A Parente  B R Lentz
Abstract:Poly(ethylene glycol) (PEG) of average molecular weight 8000 was used to mediate the fusion of large unilamellar vesicles composed of dipalmitoylphosphatidylcholine. Fusion was monitored by fluorescence assays of lipid mixing and aqueous contents mixing. The extent of lipid mixing, as monitored by DPHpPC fluorescence lifetime, indicated that large unilamellar vesicles underwent a single fusion cycle when incubated with PEG and subsequently diluted into buffer. The ANTS/DPX assays for contents mixing and leakage indicated that, while addition and dilution of PEG were accompanied by extensive contents leakage, this occurred on a much different time scale as compared to contents mixing. Both the lipid-mixing and contents-mixing assays gave comparable estimates for the number of rounds of fusion that occurred in a given time following PEG addition, although the contents-mixing assay always yielded an estimate 10-15% larger than the lipid-mixing assay. These assays were used to evaluate several factors purported to influence PEG-induced fusion. First, the initial rate of fusion was found to be dependent on PEG concentration in the range of 0-35 wt %, while the extent of fusion was not. In addition, a substantial rate enhancement occurred when vesicles were incubated with greater than 26% PEG. Second, the creation of an osmotic gradient upon dilution of vesicle-PEG mixtures was shown to have no effect on either the extent or the initial rate of fusion. Consistent with this observation, both contents and lipid mixing were found to occur prior to and independent of the dilution of the PEG-vesicle suspension. Third, impurities, either present in our commercially available PEG or added to vesicle-PEG mixtures, also had no effect on the rate or extent of fusion. Fourth, another dehydrating polymer, dextran (average mol wt 9000), was capable of promoting fusion, though at a much lower rate than PEG. These results suggest that even partial bilayer dehydration accompanied by vesicle collapse and close interbilayer contact may be sufficient to induce vesicle fusion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号