首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Singular efficacy of trimethylamine N-oxide to counter protein destabilization in ice
Authors:Strambini Giovanni B  Gonnelli Margherita
Institution:Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 56124 Pisa, Italy. strambini@pi.ibf.cnr.it
Abstract:This study reports the first quantitative estimate of the thermodynamic stability (Delta G degrees ) of a protein in low-temperature partly frozen aqueous solutions in the presence of the protective osmolytes trimethylamine N-oxide (TMAO), glycine betaine, and sarcosine. The method, based on guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, distinguishes between the deleterious effects of subfreezing temperatures from those due specifically to the formation of a solid ice phase. The results point out that in the liquid state molar concentrations of these osmolytes stabilize significantly the native fold and that their effect is maintained on cooling to -15 degrees C. At this temperature, freezing of the solution in the absence of any additive causes a progressive destabilization of the protein, Delta G degrees decreasing up to 3-4 kcal/mol as the fraction of liquid water in equilibrium with ice ( V L) is reduced to less than 1%. The ability of the three osmolytes to prevent the decrease in protein stability at small V L varies significantly among them, ranging from the complete inertness of sarcosine to full protection by TMAO. The singular effectiveness of TMAO among the osmolytes tested until now is maintained high even at concentrations as low as 0.1 M when the additive stabilization of the protein in the liquid state is negligible. In all cases the reduction in Delta G degrees caused by the solidification of water correlates with the decrease in m-value entailing that protein-ice interactions generally conduct to partial unfolding of the native state. It is proposed that the remarkable effectiveness of TMAO to counter the ice perturbation is owed to binding of the osmolyte to ice, thereby inhibiting protein adsorption to the solid phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号