首页 | 本学科首页   官方微博 | 高级检索  
     


Single Cell Fate Mapping in Zebrafish
Authors:Vikram Kohli   Kira Rehn   Saulius Sumanas
Affiliation:Division of Developmental Biology, Cincinnati Children''s Hospital Medical Center;Division of Hematology/Oncology, Cincinnati Children''s Hospital Medical Center
Abstract:The ability to differentially label single cells has important implications in developmental biology. For instance, determining how hematopoietic, lymphatic, and blood vessel lineages arise in developing embryos requires fate mapping and lineage tracing of undifferentiated precursor cells. Recently, photoactivatable proteins which include: Eos1, 2, PAmCherry3, Kaede4-7, pKindling8, and KikGR9, 10 have received wide interest as cell tracing probes. The fluorescence spectrum of these photosensitive proteins can be easily converted with UV excitation, allowing a population of cells to be distinguished from adjacent ones. However, the photoefficiency of the activated protein may limit long-term cell tracking11. As an alternative to photoactivatable proteins, caged fluorescein-dextran has been widely used in embryo model systems7, 12-14. Traditionally, to uncage fluorescein-dextran, UV excitation from a fluorescence lamp house or a single photon UV laser has been used; however, such sources limit the spatial resolution of photoactivation. Here we report a protocol to fate map, lineage trace, and detect single labeled cells. Single cells in embryos injected with caged fluorescein-dextran are photoactivated with near-infrared laser pulses produced from a titanium sapphire femtosecond laser. This laser is customary in all two-photon confocal microscopes such as the LSM 510 META NLO microscope used in this paper. Since biological tissue is transparent to near-infrared irradiation15, the laser pulses can be focused deep within the embryo without uncaging cells above or below the selected focal plane. Therefore, non-linear two-photon absorption is induced only at the geometric focus to uncage fluorescein-dextran in a single cell. To detect the cell containing uncaged fluorescein-dextran, we describe a simple immunohistochemistry protocol16 to rapidly visualize the activated cell. The activation and detection protocol presented in this paper is versatile and can be applied to any model system. Note: The reagents used in this protocol can be found in the table appended at the end of the article.
Keywords:Developmental Biology   Issue 56   Zebrafish   Two-photon   photoactivation   immunohistochemistry   caged fluorescent protein   fate mapping
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号