首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Origin and paleoecology of Middle Jurassic hiatus concretions from Poland
Authors:Michał Zatoń  Sylwia Machocka  Mark A Wilson  Leszek Marynowski  Paul D Taylor
Institution:(1) Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland;(2) Department of Geology, The College of Wooster, Wooster, OH 44691, USA;(3) Department of Palaeontology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Abstract:Bored and encrusted carbonate concretions, termed hiatus concretions, coming from the Middle Jurassic (Upper Bajocian and Bathonian) siliciclastics of the Polish Jura, south-central Poland, have been subjected to detailed paleoecological investigation for the first time. The concretions possess variable morphology and bear distinct traces of bioerosion and encrustation as a result of exhumation on the sea floor during intervals of low sedimentation and/or erosion. The borings are dominated by Gastrochaenolites and Entobia. Epilithozoans, represented by at least 26 taxa, are dominated by sabellid/serpulid worm tubes and bryozoans, while sponges and corals are minor. No relationship between the concretion size and the number of encrusters has been found, suggesting that concretion size was not the primary factor controlling diversity. Stable isotope analyses and the presence of crustacean scratch marks and Rhizocorallium traces on many of the hiatus concretions indicate that they formed just below the sediment–water interface, within the sulfate reduction zone. Moreover, crustacean activities may have been a prelude to their origin, as shapes of many concretions closely resemble thalassinoidean burrow systems. It is also possible that crustacean activity around the concretions promoted their exhumation by loosening the surrounding soft sediment. The presence of borings and encrusters on different concretion surfaces, as well as truncated borings and a number of abraded epilithozoans, indicate that after the concretions were exhumed they were repeatedly overturned and moved on the sea floor, probably due to episodic storm-related bottom currents in shallow subtidal environment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号