首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plasmodesmal Dynamics in Both Woody Poplar and Herbaceous Winter Wheat Under Controlled Short Day and in Field Winter Period
Authors:JIAN Ling-Cheng  WANG Hong
Abstract:Electron microscopic observation revealed that poplar (Populus deltoides Marsh.) and winter wheat (Triticum aestivum L. cv. Seward 80004) plasmodesmatal structures significantly changed under short day (SD, 8 h light) and in winter period, and such changes differed also noticeably between these two woody and herbaceous plants. Under long day (LD, 16 h light), many plasmodesmata with strong stain appeared in the cell wall of both poplar apical buds and winter wheat young leaf tissues, and connections of cytoplasmic endoplasmic reticulum (ER) with the ER in some plasmodesmata were observed. In addition, the typical “neck type” plasmodesmata were observed in winter wheat young leaf tissues, and their central desmotubules (appressed-ER) could be clearly identified. Under SD, many poplar plasmodesmata showed only a partial structure in the cell wall and appeared to be discontinued; some plasmodesmata swelled in the mid-wall, forming the cavity, and no appressed-ER appeared. In winter wheat, however, no noticeable alterations of plasmodesmata occurred, and the plasmodesmatal structure essentially remained same as it was under LD. In winter period, poplar plasmodesmata had a similar morphology as those observed under SD, however, winter wheat manifested at least two types of significant plasmodesmatal alterations: one plugged by electron-dense materials and the other of reduced neck region compared to those under LD. The above dynamic difference of the two species plasmodesmata under SD and winter period revealed the difference of their dormancy development under those environmental conditions.
Keywords:plasmodesmata  plant dormancy  macromolecular intercellular trafficking  poplar  winter wheat  
点击此处可从《Journal of Integrative Plant Biology》浏览原始摘要信息
点击此处可从《Journal of Integrative Plant Biology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号