首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase
Authors:Eric D Smidansky  John M Martin  Curtis L Hannah  Andreas M Fischer  Michael J Giroux
Institution:Department of Plant Sciences and Plant Pathology, Montana State University-Bozeman, Ag BioScience Facility, Bozeman, MT 59717, USA.
Abstract:In this work we test the hypothesis that yield of rice ( Oryza sativa L.) can be enhanced by increasing endosperm activity of ADP-glucose pyrophosphorylase (AGP), a key enzyme in starch biosynthesis. The potential for increases in yield exist because rice initiates more seeds than are taken to maturity and possesses excess photosynthetic capacity that could be utilized if there were more demand for assimilate. Following an approach already shown to be successful in wheat, experiments were designed to increase demand for assimilate by increasing the capacity for starch synthesis in endosperm. This was accomplished by transforming rice with a modified maize AGP large subunit sequence ( Sh2r6hs) under control of an endosperm-specific promoter. This altered subunit confers upon AGP decreased sensitivity to allosteric inhibition by inorganic phosphate (Pi) and enhanced heat stability, potentially leading to higher AGP activity in vivo. The Sh2r6hs transgene increased AGP activity in developing endosperm by 2.7-fold in the presence of Pi. Increases in AGP activity in transgenic seeds compared with controls were maximal between 10-15 days after anthesis. Starch content of individual seeds at harvest was not increased, but seed weight per plant and total plant biomass were each increased by more than 20%. Increased endosperm AGP activity thus stimulates setting of additional seeds and overall plant growth rather than increasing yield of seeds already set. Results demonstrate that deregulation of endosperm AGP increases overall plant sink strength, leading to larger, more productive plants in a manner similar to that in wheat having similar genetic modification.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号