首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cement flow during impaction allografting: a finite element analysis
Authors:Frei Hanspeter  Gadala Mohamed S  Masri Bassam A  Duncan Clive P  Oxland Thomas R
Institution:Department of Orthopaedics and Mechanical Engineering, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada V5Z 4E3.
Abstract:Cement intrusion into cancellous or impacted bone is not well understood. We adopted an engineering mechanics approach to predict the effect of surgical variables on the cement intrusion into impacted cancellous bone, used for the revision of failed total hip replacement with the impaction allografting technique. Specifically, a three-dimensional finite element model was used to determine the effects of cement viscosity, the magnitude and duration of pressurization, and the distribution of the porosity along the femur on cement intrusion. The overall averaged mean intrusion depth difference between the finite element model prediction and the cadaveric measurements was 1.1mm. The depth of penetration increased with higher pressurization pressure, duration of pressurization, and earlier stem insertion (lower viscosity), but maintained a similar profile. The distribution of the porosity along the femur determined the intrusion profile. Cement viscosity, the applied pressure or the duration of the pressurization can be adjusted to limit the cement volume injected into the medullary canal and therefore prevent the cement from reaching the endosteal surface.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号