首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Integration of topographical and biochemical cues by axons during growth on microfabricated 3-D substrates
Authors:Li Nianzhen  Folch Albert
Institution:Department of Bioengineering, Campus Box 352255, University of Washington, Seattle, WA 98195-2255, USA.
Abstract:During embryonic neural development, axon tips ("growth cones") are guided through a dynamic three-dimensional (3-D) landscape by soluble chemotropic factors and by immobilized, growth-permissive or growth-inhibiting contact cues present in the extracellular matrix and on the surface of surrounding cells. It has been difficult to probe the search algorithms of growth cones in response to multiple contact cues during 3-D navigation using traditional two-dimensional (2-D) substrates. Here, we present an in vitro study in which the axons of murine embryonic cortical neurons are challenged with competing growth options, using 3-D substrates that feature variations in permissiveness and microtopography. As 3-D substrates, we used poly-D-lysine (PDL) coatings on microfabricated steps of polydimethylsiloxane (PDMS) and complementary features of Matrigel. We found that axons display a preference for PDL over Matrigel and for the straightest path within a distance consistent with the exploratory range of the growth cone. When these two preferences are in conflict, axons choose to grow straight into Matrigel; when the straight path is not permissive, the axon turns in the direction that minimizes the turning angle. These results suggest that growth cones make 3-D navigation decisions by integrating permissiveness and topographical cues.
Keywords:Axon guidance  Cell culture  Embryonic  PDMS  Matrigel  Surface micropatterning  Surface microstructure
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号