首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of Mycorrhizal Inoculation, Inundation Period, Salinity, and Phosphorus Availability on the Growth of Two Salt Marsh Grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in Nursery Systems
Authors:J Murray McHugh  John Dighton
Institution:Rutgers University Pinelands Field Station, 501 Four Mile Road, P.O. Box 206, New Lisbon, NJ 08064, U.S.A.; Address correspondence to J. Dighton, email
Abstract:Restoration of salt marsh ecosystems is an important concern in the eastern United States to mitigate damage caused by industrial development. Little attention has been directed to the mycorrhizal influence on plantings of salt marsh species to stabilize estuarine sediments and establish cover. In our study, seedlings of two salt marsh grasses, Spartina alterniflora and Spartina cynosuroides, were grown in soil with a commercial, mixed species inoculum of arbuscular mycorrhizal fungi. Plants were grown in experimental “ebb and flow” boxes, simulating three levels of tidal inundation, to which two levels of applied phosphorus (P) and two levels of salinity were imposed. After 2.5 months, S. alterniflora was poorly colonized by arbuscular mycorrhizae, developing only fungal hyphae and no arbuscules, but S. cynosuroides became moderately colonized. Mycorrhizal inoculation marginally improved growth and P and nitrogen (N) content of both plant species at low levels of P supply but significantly increased tillering in both plant species. This factor could be beneficial in enhancing ground cover during restoration procedures. Greater P availability increased the mycorrhizal status of S. cynosuroides and improved P nutrition of both plant species, despite a reduction in the root‐to‐shoot ratio. Increasing salinity reduced mycorrhizal colonization of S. alterniflora but not of S. cynosuroides. Growth and nutrient content of S. alterniflora was improved at higher levels of salinity, but only increased nutrient content in S. cynosuroides. Increased duration of tidal inundation decreased plant growth in both species, but tissue P and N concentrations were highest with the longest time of inundation in both species.
Keywords:mycorrhizae                        P                        plant growth                        restoration                        salinity                                    Spartina                                  tidal inundation  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号