首页 | 本学科首页   官方微博 | 高级检索  
     


DNA cleavage reactions by type II restriction enzymes that require two copies of their recognition sites
Authors:Embleton M L  Siksnys V  Halford S E
Affiliation:Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
Abstract:Several type II restriction endonucleases interact with two copies of their target sequence before they cleave DNA. Three such enzymes, NgoMIV, Cfr10I and NaeI, were tested on plasmids with one or two copies of their recognition sites, and on catenanes containing two interlinked rings of DNA with one site in each ring. The enzymes showed distinct patterns of behaviour. NgoMIV and NaeI cleaved the plasmid with two sites faster than that with one site and the catenanes at an intermediate rate, while Cfr10I gave similar steady-state rates on all three substrates. Both Cfr10I and NgoMIV converted the majority of the substrates with two sites directly to the products cut at both sites, while NaeI cleaved just one site at a time. All three enzymes thus synapse two DNA sites through three-dimensional space before cleaving DNA. With Cfr10I and NgoMIV, both sites are cleaved in one turnover, in a manner consistent with their tetrameric structures, while the cleavage of a single site by NaeI indicates that the second site acts not as a substrate but as an activator, as reported previously. The complexes spanning two sites have longer lifetimes on catenanes with one site in each ring than on circular DNA with two sites, which indicates that the catenanes have more freedom for site juxtaposition than plasmids with sites in cis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号