首页 | 本学科首页   官方微博 | 高级检索  
     


Caspase-3-dependent and -independent degradation of 28 S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement
Authors:Nadano D  Sato T A
Affiliation:Molecular Oncology Laboratory, Tsukuba Life Science Center, RIKEN (Institute of Physical and Chemical Research), Tsukuba, Ibaraki 305-0074, Japan.
Abstract:Activation of death receptors initiates intrinsic apoptosis programs in various parts of the cell. To explore the possibility that ribosomal RNA (rRNA), essential for translation in ribosomes, is a target of pro-apoptotic proteins, rRNA was analyzed by electrophoresis in two apoptosis systems: human Jurkat cells treated with anti-Fas antibody and human U937 cells treated with tumor necrosis factor-alpha. In both systems, bands in addition to those of unmodified rRNA were detected a few hours after death receptor engagement. In both systems, the primary additional band was identical and comprised the 3'-terminal region of 28 S rRNA. The degradation of 28 S rRNA was simultaneous with protein synthesis inhibition in both systems. The caspase-3 inhibitor Z-DEVD-FMK suppressed rRNA degradation and protein synthesis inhibition in Jurkat cells but not in U937 cells. Together, our data suggest that different pathways are activated in the two systems we studied, and the final steps in these pathways use very similar or identical ribonucleases to cleave 28 S rRNA. These data suggest a physiological link between rRNA degradation and inhibition of protein synthesis. In general, apoptosis execution initiated by death receptor engagement is promoted by protein synthesis inhibition. Triggered by rRNA degradation, malfunction of the protein synthesis machinery may prompt death execution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号