首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxidative stress enhances phosphorylation of p53 in neonatal rat cardiomyocytes
Authors:Xilin Long  Michael J Goldenthal  José Marín-García
Institution:(1) The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA
Abstract:p53 is an important regulator of cell growth and apoptosis and its activity is regulated by phosphorylation. Accordingly, in neonatal rat cardiomyocytes we examined the involvement of p53 in H2O2-induced apoptosis. Treatment with 50–100 μM H2O2 markedly induced apoptosis in cardiomyocytes, as assessed by gel electrophoresis of genomic DNA. To examine whether H2O2 increases p53 phosphorylation in cardiomyocytes, we utilized an antibody that specifically recognizes phosphorylated p53 at serine-15. The level of phosphorylated p53 was markedly increased by 100 μM H2O2 at 30 and 60 min. Using specific protein kinase inhibitors we examined the involvement of protein kinases in p53 phosphorylation in response to H2O2 treatment. However, staurosporine, a broad spectrum inhibitor of protein kinases, SB202190, a specific p38 kinase inhibitor, PD98059, a MAP kinase inhibitor, wortmannin, an inhibitor of DNA-PK and PI3 kinase, SP600125, a JNK inhibitor and caffeine,an inhibitor of ATM and ATR, failed to prevent the H2O2-induced phosphorylation of p53. cDNA microarray revealed that H2O2 markedly increased expression of several p53 upstream modifiers such as the p300 coactivator protein and several downstream effectors such as gadd45, but decreased the expression of MDM2, a negative regulator of p53. Our results suggest that phosphorylation of p53 at serine-15 may be an important signaling event in the H2O2-mediated apoptotic process.
Keywords:Oxidative stress  H2O2            p53 Phosphorylation  Apoptosis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号