首页 | 本学科首页   官方微博 | 高级检索  
     


Plants adapted to warmer climate do not outperform regional plants during a natural heat wave
Authors:Anna Bucharova  Walter Durka  Julia‐Maria Hermann  Norbert Hölzel  Stefan Michalski  Johannes Kollmann  Oliver Bossdorf
Affiliation:1. Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, Tübingen, Germany;2. Department of Community Ecology, Helmholtz Centre for Environmental Research‐UFZ, Halle, Germany;3. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Leipzig, Germany;4. Restoration Ecology, Department of Ecology & Ecosystem Management, Technische Universit?t München, München, Germany;5. Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University of Münster, Münster, Germany
Abstract:With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm‐adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4–2.0°C higher than the long‐term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long‐term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm‐adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm‐adapted plants, despite elevated temperatures, which suggests that translocating warm‐adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.
Keywords:Adaptation to novel environment  assisted migration  climate warming  global change  local adaptation  predictive provenancing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号