Evolution of alternative insect life histories in stochastic seasonal environments |
| |
Authors: | Sami M. Kivelä Panu Välimäki Karl Gotthard |
| |
Affiliation: | 1. Department of Zoology, Stockholm University, Stockholm, Sweden;2. Department of Ecology, University of Oulu, Oulu, Finland |
| |
Abstract: | Deterministic seasonality can explain the evolution of alternative life history phenotypes (i.e., life history polyphenism) expressed in different generations emerging within the same year. However, the influence of stochastic variation on the expression of such life history polyphenisms in seasonal environments is insufficiently understood. Here, we use insects as a model and explore (1) the effects of stochastic variation in seasonality and (2) the life cycle on the degree of life history differentiation among the alternative developmental pathways of direct development and diapause (overwintering), and (3) the evolution of phenology. With numerical simulation, we determine the values of development (growth) time, growth rate, body size, reproductive effort, adult life span, and fecundity in both the overwintering and directly developing generations that maximize geometric mean fitness. The results suggest that natural selection favors the expression of alternative life histories in the alternative developmental pathways even when there is stochastic variation in seasonality, but that trait differentiation is affected by the developmental stage that overwinters. Increasing environmental unpredictability induced a switch to a bet‐hedging type of life history strategy, which is consistent with general life history theory. Bet‐hedging appeared in our study system as reduced expression of the direct development phenotype, with associated changes in life history phenotypes, because the fitness value of direct development is highly variable in uncertain environments. Our main result is that seasonality itself is a key factor promoting the evolution of seasonally polyphenic life histories but that environmental stochasticity may modulate the expression of life history phenotypes. |
| |
Keywords: | Bet‐hedging clinal variation geometric mean fitness life cycle phenotypic plasticity voltinism |
|
|