首页 | 本学科首页   官方微博 | 高级检索  
     


Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity
Authors:Richards Erica M  Rosenthal Robert E  Kristian Tibor  Fiskum Gary
Affiliation:Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA.
Abstract:The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21-30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号