首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia)
Authors:Leandra Watanabe  Patricia Ribeiro de Moura  Lucas Bleicher  Alessandro S Nascimento  Laura S Zamorano  Juan J Calvete  Libia Sanz  Alicia Pérez  Sergey Bursakov  Manuel G Roig  Valery L Shnyrov  Igor Polikarpov
Institution:1. Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP, Brazil;2. Departamento de Química Física, Facultad de Química, Universidad de Salamanca, 37008 Salamanca, Spain;3. Instituto de Biomedicina de Valencia (CSIC), 46010 Valencia, Spain;4. REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;5. Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain
Abstract:Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H2O2, and organic solvents. Thus, RPTP is a promising candidate for developing H2O2-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 Å. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号