首页 | 本学科首页   官方微博 | 高级检索  
     


Identification and characterization of an intracellular Cu,Zn-superoxide dismutase (icCu/Zn-SOD) gene from clam Venerupis philippinarum
Authors:Chenghua Li  Huili Sun  Aiqin Chen  Xuanxuan Ning  Huifeng Wu  Song Qin  Qinzhao Xue  Jianmin Zhao
Affiliation:1. College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China;2. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
Abstract:Superoxide dismutase (SOD, EC 1.15.1.1) represents one kind of enzyme involved in scavenging the high level of reactive oxygen species (ROS) into molecular oxygen and hydrogen peroxide. In the present study, the intracellular Cu/Zn-SOD gene (icCu/Zn-SOD) of Venerupis philippinarum (denoted as VpSOD) was identified from haemocytes by homology cloning and RACR approaches. The full-length cDNA of VpSOD consisted of 910 nucleotides with a canonical polyadenylation signal sequence AATAAA, a polyA tail, and an open-reading frame of 465 bp encoding 154 amino acids. The deduced amino acid of VpSOD shared high similarity with the icCu/Zn-SODs from other species, indicating that VpSOD should be a new member of icCu/Zn-SOD family. Several highly conserved motifs including Cu, Zn binding sites (H46, H48, H63, H120 for Cu binding, and H63, H71, H80, D83 for Zn binding), intracellular disulfide bond and two Cu, Zn SOD signatures were also identified in VpSOD. The temporal expression of VpSOD in haemocytes after Vibrio anguillarum challenge was recorded by quantitative real-time RT-PCR. The relative expression level of VpSOD mRNA was up-regulated rapidly at 6 h post-infection and reached 18-fold of the control group. After a drastic decrease at 12 h, the expression level increased again and reached 22-fold to that in the control group at 96 h post-infection. All these results indicated that VpSOD was an acute-phase protein involved in the immune responses of V. philippinarum.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号