首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Irreversible block of cardiac mutant Na+ channels by batrachotoxin
Authors:Wang Sho-Ya  Tikhonov Denis B  Mitchell Jane  Zhorov Boris S  Wang Ging Kuo
Institution:Department of Biology, State University of New York at Albany, Albany, New York, USA.
Abstract:Batrachotoxin (BTX) not only keeps the voltage-gated Na(+) channel open persistently but also reduces its single-channel conductance. Although a BTX receptor has been delimited within the inner cavity of Na(+) channels, how Na(+) ions flow through the BTX-bound permeation pathway remains unclear. In this report we tested a hypothesis that Na(+) ions traverse a narrow gap between bound BTX and residue N927 at D2S6 of cardiac hNa(v)1.5 Na(+) channels. We found that BTX at 5 microM indeed elicited a strong block of hNa(v)1.5-N927K currents (approximately 70%) after 1000 repetitive pulses (+50 mV/20 ms at 2 Hz) without any effects on Na(+) channel gating. Once occurred, this unique use-dependent block of hNa(v)1.5-N927K Na(+) channels recovered little at holding potential (-140 mV), demonstrating that BTX block is irreversible under our experimental conditions. Such an irreversible effect likewise developed in fast inactivation-deficient hNa(v)1.5-N927K Na(+) channels albeit with a faster on-rate; approximately 90% of peak Na(+) currents were abolished by BTX after 200 repetitive pulses (+50 mV/20 ms). This use-dependent block of fast inactivation-deficient hNa(v)1.5-N927K Na(+) channels by BTX was duration dependent. The longer the pulse duration the larger the block developed. Among N927K/W/R/H/D/S/Q/G/E substitutions in fast inactivation-deficient hNa(v)1.5 Na(+) channels, only N927K/R Na(+) currents were highly sensitive to BTX block. We conclude that (a) BTX binds within the inner cavity and partly occludes the permeation pathway and (b) residue hNa(v)1.5-N927 is critical for ion permeation between bound BTX and D2S6, probably because the side-chain of N927 helps coordinate permeating Na(+) ions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号