首页 | 本学科首页   官方微博 | 高级检索  
     


Mutational analysis of block and facilitation of HERG current by a class III anti-arrhythmic agent, nifekalant
Authors:Hosaka Yukio  Iwata Miki  Kamiya Narutoshi  Yamada Mitsuhiko  Kinoshita Kengo  Fukunishi Yoshifumi  Tsujimae Kenji  Hibino Hiroshi  Aizawa Yoshifusa  Inanobe Atsushi  Nakamura Haruki  Kurachi Yoshihisa
Affiliation:Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
Abstract:Chemicals and toxins are useful tools to elucidate the structure-function relationship of various proteins including ion channels. The HERG channel is blocked by many compounds and this may cause life-threatening cardiac arrhythmia. Besides block, some chemicals such as the class III anti-arrhythmic agent nifekalant stimulate HERG at low potentials by shifting its activation curve towards hyperpolarizing voltages. This is called "facilitation". Here, we report mutations and simulations analyzing the association between nifekalant and channel pore residues for block and facilitation. Alanine-scanning mutagenesis was performed in the pore region of HERG. The mutations at the base of the pore helix (T623A), the selectivity filter (V625A) and the S6 helix (G648A, Y652A and F656A) abolished and S624A attenuated both block and facilitation induced by the drug. On the other hand, the mutation of other residues caused either an increase or a decrease in nifekalant-induced facilitation without affecting block. An open-state homology model of the HERG pore suggested that T623, S624, Y652 and F656 faced the central cavity, and were positioned within geometrical range for the drug to be able to interact with all of them at the same time. Of these, S649 was the only polar residue located within possible interaction distance from the drug held in its blocking position. Further mutations and flexible-docking simulations suggest that the size, but not the polarity, of the side chain at S649 is critical for drug induced facilitation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号