首页 | 本学科首页   官方微博 | 高级检索  
     


Coordinated movements prevent jamming in an Emperor penguin huddle
Authors:Zitterbart Daniel P  Wienecke Barbara  Butler James P  Fabry Ben
Affiliation:Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany. daniel.p.zitterbart@physik.uni-erlangen.de
Abstract:For Emperor penguins (Aptenodytes forsteri), huddling is the key to survival during the Antarctic winter. Penguins in a huddle are packed so tightly that individual movements become impossible, reminiscent of a jamming transition in compacted colloids. It is crucial, however, that the huddle structure is continuously reorganized to give each penguin a chance to spend sufficient time inside the huddle, compared with time spent on the periphery. Here we show that Emperor penguins move collectively in a highly coordinated manner to ensure mobility while at the same time keeping the huddle packed. Every 30-60 seconds, all penguins make small steps that travel as a wave through the entire huddle. Over time, these small movements lead to large-scale reorganization of the huddle. Our data show that the dynamics of penguin huddling is governed by intermittency and approach to kinetic arrest in striking analogy with inert non-equilibrium systems, including soft glasses and colloids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号